Abstract

Within an extended Su-Schrieffer-Heeger model including interchain interactions and the extended Hubbard model (EHM), the dynamical relaxation of photoexcitations in the presence of an external electric field is investigated using a nonadiabatic evolution method. Under the action of the interchain interactions both intrachain excitons and interchain excitons are generated after photoexcitation in two coupled polymer chains. Our results show that the field required to dissociate the excitons depends sensitively on the strength of the interchain coupling. As the interchain coupling strength increases, the dissociation field decreases. By analyzing the relation between the yield of intrachain and interchain excitons and the interchain coupling strength, we explain the dependence between the dissociation field and the strength of the interchain interactions. The theoretical results are expected to provide useful predictions concerning which polymers with properly strong interchain interactions are likely to be most suitable for use in organic solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.