Abstract

This paper presents an extended multicomponent lattice Boltzmann model for the simulation of electrolytes. It is derived by means of a finite discrete velocity model and its discretization. The model recovers momentum and mass transport according to the incompressible Navier-Stokes equation and Maxwell-Stefan formulation, respectively. It includes external driving forces (e.g., electric field) on diffusive and viscous scales, concentration-dependent Maxwell-Stefan diffusivities, and thermodynamic factors. The latter take into account nonideal diffusion behavior, which is essential as electrolytes involve charged species and therefore nonideal long and short-range interactions among the molecules of the species. Furthermore, we couple our scheme to a finite element method to include electrostatic interactions on the macroscopic level. Numerical experiments show the validity of the presented model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call