Abstract

Adaptive governance of areas set aside for future protection of biodiversity, sustainable production, and recreation requires knowledge about whether and how effects of area protection are modulated by climate change and redistribution of species. To investigate this, we compare biodiversity of plants (assessed using vegetation plots) and arthropods (collected with Malaise traps, analyzed using metabarcoding) and productivity (tree growth, determined using dendrochronology) in protected and non-protected oak (Quercus spp.) forests along a latitudinal gradient (55.6 °N – 60.8 °N) in Sweden. We also compare historical, recent and projected future climate in the region. In contrast to established global latitudinal diversity gradients, species richness of plants and arthropods increased northwards, possibly reflecting recent climate-induced community redistributions, but neither was higher in protected than in non-protected areas, nor associated with contemporary ground temperature. Species composition of arthropods also did not differ between protected and non-protected areas. Arthropod biomass increased with latitude, suggesting that the magnitude of cascading effects mediated via their roles as pollinators, herbivores, and prey for other trophic levels, varies geographically and will change with a moving climate. Annual growth rate of oaks (an ecosystem service in the form of biomass increase and carbon sequestration) was independent of latitude and did not differ between protected and non-protected areas. Our findings question the efficacy of contemporary designation and management of protected oak forests, and emphasize that development and implementation of modified climate smart conservation strategies is needed to safeguard ecosystem functioning, biodiversity, and recreational values of protected forest areas against future challenges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.