Abstract

We present an experimental characterization of InGaAs–GaAs quantum wire arrays grown by selective-area metalorganic chemical vapor deposition (MOCVD). The wire patterns studied were obtained by high-resolution electron-beam lithography on poly(methylmethacrylate) and wet etching of silicon dioxide. We observe a large nonlinear enhancement of growth inside the wire region. In addition, the results of gas phase diffusion growth simulations on the expected inhomogeneity of the fabricated quantum wires are presented. The degree of inhomogeneity of fabricated quantum wire arrays was studied by spatially resolved photoluminescence. Our results show that a suitable patterning technique, coupled with proper growth conditions, could allow control of the selective growth profile across the wire array.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call