Abstract

Abstract. The chronology of the Cenozoic “Namib Group” of the Namib Desert is rather poorly understood and lacks direct radiometric dating. Thus, the paleoclimate and landscape evolution of the central Namib Desert remains imprecise, complicating the detailed search for global and/or local forcing factors for the aridification of the Namib. The widespread occurrence of calcretes and silcretes in the Namib Desert allows us to apply the novel application of the U–Pb laser ablation dating technique on silcretes and calcretes to date important phases of landscape stability and to retrieve critical paleoclimatic and environmental information on desertification and its paleoclimatic variability. Microscale silcrete formation (maximum of 8 mm) due to pressure solution by expanding calcrete cementation provides the opportunity to date multiple phases (multiple generations of silcrete as growing layers or shells) of silcrete formation. Groundwater silcrete and calcrete formation occurred at our study site during the Pliocene, a period of relatively stable climate and landscape conditions under semi-arid to arid conditions. Terrestrial cosmogenic nuclide (TCN) exposure ages from flat canyon rim surfaces indicate the cessation of groundwater calcrete formation due to incision during the Late Pliocene–Early Pleistocene and mark a large-scale landscape rejuvenation due to climate shifts towards more arid conditions in the Pleistocene, which can be connected to global climate patterns. This study demonstrates the feasibility of applying U–Pb laser ablation to groundwater silcrete and calcretes, discusses several important issues associated with this technique, and opens up the possibility of dating numerous sedimentary sequences containing silcretes and calcretes in arid environments. In particular, the use of silcretes (as described above) reduces potential effects of detrital components and bulk signal measurements by using massive calcretes. Our study redefines and improves the generally accepted Late Cenozoic chronostratigraphy of the Namib Desert (Miller, 2008).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call