Abstract
The Great Salt Lake-Bonneville basin has contained lakes for many millions of years and has been hydrographically closed for most of its history. Lakes in the lacustrine system have ranged from saline to fresh, and from shallow to deep. Tectonics, specifically crustal extension, which began roughly 20 million years ago as part of the formation of the Basin and Range Province, is the cause of lake-basin formation. Much of the rock record of lakes from Miocene time is faulted and has been eroded and/or buried. Pliocene and Quaternary lakes are better known. For much of the past ~5 Ma the basin has probably appeared similar to today, with a shallow saline terminal lake in a dry desert surrounded by mountains. Freshwater marshes and fluvial systems existed on the basin floor during part of the past ~5 Ma, probably were caused by the lack of inflow from the upper Bear River during the Neogene Period and most of the Pleistocene Epoch (that river was diverted into the basin during the Late Pleistocene), combined with a warm and dry climate. The largest deep-lake cycles were caused by changes to a cold and wet climate, which affected the water budget of the lake system and were correlated with periods of global glaciation. Based on limited data, the total length of time deep lakes existed in the basin is thought to be less than 10% of the past ~773 ka. Lake Bonneville, the most-recent of the deep-lake cycles, was probably the deepest and largest manifestation of the lake system in the history of the basin. Named deep-lake cycles during the past ~773 ka, are Lava Creek (~620 ka), Pokes Point (~430 ka), Little Valley (~150 ka), Cutler Dam (~60 ka), and Bonneville (~30 -13 ka). Of the Quaternary deep-lake cycles, only Lake Bonneville is represented by lacustrine landforms, outcrops, and cores of offshore deposits; no landforms from older deep-lake cycles exist (some may be buried under Lake Bonneville deposits but are not visible at the surface), and pre-Bonneville lakes are represented by sediments in limited outcrops and drill holes (including a set of cores taken by A.J. Eardley in the mid 20th century). During the past ~773 ka, deep-lake cycles were correlated with changes in the total volume of global glacial ice; the available evidence indicates that prior to ~773 ka deep-lake cycles were rare.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.