Abstract

Abstract Recent studies in the Global Land–Atmosphere Coupling Experiment (GLACE) established a framework to estimate the extent to which anomalies in the land surface state (e.g., soil moisture) can affect rainfall generation and other atmospheric processes. Within this framework, a multiyear GLACE-type experiment is carried out with a coupled land–atmosphere general circulation model to examine the interannual variability of land–atmosphere coupling strength. Soil wetness with intermediate values are in the range at which rainfall generation, near-surface air temperature, and surface turbulent fluxes are most sensitive to soil moisture anomalies, and thus, land–atmosphere coupling strength peaks in this range. As a result, the “hot spots” with strong land–atmosphere coupling strength appear in regions with intermediate climatological soil wetness (e.g., transition zones between dry and wet climates), consistent with previous studies. Land–atmosphere coupling strength experiences significant year-to-year variation because of interannual variability of soil moisture and the local spatiotemporal evolution of hydrologic regime. Coupling strength over areas with dry (wet) climate is enhanced during wet (dry) years since the resultant soil wetness enters into the sensitive range from a relatively insensitive range, and soil moisture can have stronger potential impact on surface turbulent fluxes and convection. On the other hand, land–atmosphere coupling strength over areas with wet (dry) climate is weakened during wet (dry) years since the soil wetness moves further away from the sensitive range. This results in a positive correlation between the land–atmosphere coupling strength and soil moisture anomalies over areas with dry climate and a negative correlation over areas with wet climate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call