Abstract

Abstract Global issues such as climate change, environmental pollution, and conservation of resources require manufacturers of internal combustion engines (ICE) to achieve substantially reduced emissions of greenhouse gases and pollutants as well as increased engine efficiency and durability. Condition monitoring and predictive maintenance approaches for sliding bearings in ICEs are key tools for increasing engine durability and saving resources by exploiting more of the useful lifetime of a bearing while avoiding critical engine operation caused by bearing wear and failure. These approaches require appropriate measurement technology capable of acquiring informative parameters that reflect the current condition of the bearings while withstanding the high temperatures and mechanical loads encountered inside the engine and accommodating spatial constraints. This paper deals with research work related to advanced sensor technology that is highly integrated into sliding bearings so that information is obtained nearly directly from relevant areas such as the bearing running layer and the lubrication gap. An isolated, sputtered sensor layer with a thickness of a few micrometers is employed in combination with a laser structuring process to form the desired thin film sensor structure below the bearing running surface. While several measurement parameters and corresponding sensor types are conceivable, this paper focuses on temperature and strain measurements that rely on a change in the electrical resistance of the sensor layer material. Promising sensor layouts and positions targeted for use in condition monitoring applications in ICEs are elaborated in detail. Developments and challenges in implementing the sensor technology concept—in particular with regard to the process of manufacturing the sensor as well as the wire contacting—are outlined in depth. The paper concludes by presenting measurement results obtained with this sensor technology at lab scale as well as an outlook toward implementing the instrumented bearings in ICEs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call