Abstract

Many pipelines are built in regions affected by harsh environmental conditions where changes in soil texture between winter and summer increase the likelihood of hazards. Pipeline routes also cross mountains that are characterized by steep slopes and unstable soils as in the Andes and along the coastal range of Brazil. In other cases, these pipelines are laid in remote areas with significant seismic activity or exposure to permafrost. Depending on weather conditions and location, visual inspection is difficult or even impossible and therefore remote sensing solutions for pipes offer significant advantages over conventional inspection techniques. Optical fibers can help solve these challenges. Optical fiber based geotechnical and structural monitoring use distributed measurement of strain and temperature thanks to the sensitivity of Brillouin scattering to mechanical and thermal effects. The analysis of scattering combined with a time domain technique allows the measurement of strain and temperature profiles. Temperature measurement is carried out to monitor soil erosion or dune migration through event quantification and spatial location. Direct measurement of strain in the soil also improves the detection of environmental hazards. As an example, the technology can pinpoint the early signs of landslides. In some cases, actual pipe deformation must be monitored such as in the case of an active tectonic fault crossing. Pipe deformation monitoring operation is achieved by the measurement of distributed strain along fiber sensors attached to the structure. This paper comprehensively reviews over 15 years of continuous development of pipeline geohazard risk monitoring with optical fiber distributed sensors from technology qualification and validation to its implementation in real cases as well as its successful continuous operation. Case studies presented include pipeline monitoring in Arctic and Siberian environment as well as in the Andes which illustrate how the technology is used and demonstrate proof of early detection and location of geohazard events such as erosion, landslide, settlement and pipe deformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call