Abstract

Laser beam welding is now a common manufacturing method for a wide range of steel products from automobiles to razor blades. However, the process has only recently been approved for critical applications involving aluminium alloys, notably in the aerospace and automotive industries. The properties of aluminium alloys influence the interaction between the beam and the material to a far greater extent than for steels. The challenge of developing industrial welding procedures has therefore been considerable. The present review describes the effects of CO2 and Nd–YAG laser beam processing parameters and the properties of the most common wrought aluminium alloys on the characteristics of welded joints. Porosity, solidification cracking, and poor weld bead geometry are shown to be the most frequently encountered imperfections. These can be eliminated through the use of appropriate filler materials, process gases, material preparation, and in some instances, adaptive control systems. Very little work has been reported on the corrosion properties of laser welded aluminium alloys. Experimental processing parameters are presented and compared using an analytical model, which can also be employed for predictive purposes. A number of industrial applications are described. These demonstrate that, for specific alloys, the process is now sufficiently well understood to be approved for high volume production, particularly in the transport industries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.