Abstract

The drive toward fulfilling weight reduction obligation, superior weld quality requirement, and industrial manufacturing rationale has sprung up considerable interest in applying laser welding technology on aluminum alloys. Nevertheless, porosity, solidification cracking, and surface reflectivity have been the major banes of laser welding of aluminum alloys. However, literature has shown that positive efforts have been accomplished in reducing these fundamental concerns by adopting careful selection of welding procedure, modification of pure laser welding techniques, and the use of appropriate filler metal. Albeit, there is still upbeat progression on the application and improvement of laser welding of aluminum alloys. At present, laser welding technology has the potential of fulfilling industrial requirements in joining lightweight aluminum alloys because of its capacity for automation and intrinsic flexibility, precision and repeatability, low general heat input, high welding speed, and low weld distortion. As a result, this report examines the available and current status of laser technologies in welding aluminum alloys. It further categorizes the laser technologies of aluminum alloys into four assemblages, namely, pure or single-beam laser welding, laser-arc hybrid welding, tailored heat source laser welding, and other innovative laser welding technologies, respectively. Mechanical, corrosion, and microstructural behaviors of laser welded aluminum alloys are also studied. Conversely, some of the research areas that need further investigations are proposed. Corrosion behavioral properties, influence of micropores on fatigue and quasi-static tensile strength, and toughness characterization of laser welded aluminum alloys are insufficient in literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call