Abstract
The 2x2 optical switch is a crucial component to the future of optical communications and integrated optics. Optical switches on the silicon-on-insulator (SOI) platform have shown advantages in terms of device footprint and switching speed. However, due to the intrinsic properties of SOI rib waveguides, these devices suffer from a strong wavelength and polarization dependent response. Our work presents an SOI based Mach-Zehnder interferometer (MZI) switch which is both polarization and wavelength insensitive over a large bandwidth of 1260-1360 nm. We have completed detailed analyses on the polarization and wavelength performance of the MZI, and obtained optimized parameters in a novel design to reduce the crosstalk f or transverse electric (TE) and transverse magnetic (TM) modes over the wavelength range 1260-1360 nm. Our simulations suggest that we successfully obtained a polarization and wavelength insensitive MZI. A crosstalk level below -18 dB is achieved for both the TE and TM modes in the on-state and the off-state, across the 100 nm bandwidth. Such a polarization and wavelength insensitive switch has a variety of applications in wavelength division multiplexing and other communication systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.