Abstract
We present four numerical methods for computing the singular value decomposition (SVD) of large sparse matrices on a multiprocessor architecture. We emphasize Lanczos and subspace iteration-based methods for determining several of the largest singular triplets (singular values and corresponding left- and right-singular vectors) for sparse matrices arising from two practical applications: information retrieval and seismic reflection tomography. The target architectures for our implementations are the CRAY-2S/4–128 and Alliant FX/80. The sparse SVD problem is well motivated by recent information-retrieval techniques in which dominant singular values and their corresponding singular vectors of large sparse term-document matrices are desired, and by nonlinear inverse problems from seismic tomography applications which require approximate pseudo-inverses of large sparse Jacobian matrices. This research may help advance the development of future out-of-core sparse SVD methods, which can be used, for example, to handle extremely large sparse matrices 0 × (106) rows or columns associated with extremely large databases in query-based information-retrieval applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have