Abstract
We simulate 4d SU(N) pure-gauge theories at large N using a parallel tempering scheme that combines simulations with open and periodic boundary conditions, implementing the algorithm originally proposed by Martin Hasenbusch for 2d CPN–1 models. That allows to dramatically suppress the topological freezing suffered from standard local algorithms, reducing the autocorrelation time of Q2 up to two orders of magnitude. Using this algorithm in combination with simulations at non-zero imaginary θ we are able to refine state-of-the-art results for the large-N behavior of the quartic coefficient of the θ-dependence of the vacuum energy b2, reaching an accuracy comparable with that of the large-N limit of the topological susceptibility.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have