Abstract

We report a large positive magnetoresistance ratio in insulating organic crystals theta-(ET)(2)CsZn(SCN)(4) at low temperatures at which they exhibit highly nonlinear current-voltage characteristics. Despite the nonlinearity, the magnetoresistance ratio is independent of the applied voltage. The magnetoresistance ratio depends little on the magnetic field direction and is described by a simple universal function of mu(B)B/k(B)T, where mu(B) is the Bohr magneton. The positive magnetoresistance may be caused by magnetic-field-induced parallel alignment of spins of mobile and localized electrons, and a resulting blockade of electrical conduction due to the Pauli exclusion principle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.