Abstract
This study evaluates the machine translation (MT) quality of two state-of-the-art large language models (LLMs) against a traditional neural machine translation (NMT) system across four language pairs in the legal domain. It combines automatic evaluation metrics (AEMs) and human evaluation (HE) by professional translators to assess translation ranking, fluency and adequacy. The results indicate that while Google Translate generally outperforms LLMs in AEMs, human evaluators rate LLMs, especially GPT-4, comparably or slightly better in terms of producing contextually adequate and fluent translations. This discrepancy suggests LLMs' potential in handling specialized legal terminology and context, highlighting the importance of human evaluation methods in assessing MT quality. The study underscores the evolving capabilities of LLMs in specialized domains and calls for reevaluation of traditional AEMs to better capture the nuances of LLM-generated translations.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.