Abstract
A model is presented for the ion distribution function in a plasma at a solid target with a magnetic field $\boldsymbol {B}$ inclined at a small angle, $\alpha \ll 1$ (in radians), to the target. Adiabatic electrons are assumed, requiring $\alpha \gg \sqrt {Zm_{e}/m_{i}}$ , where $m_{e}$ and $m_{i}$ are the electron and ion mass, respectively, and $Z$ is the charge state of the ion. An electric field $\boldsymbol {E}$ is present to repel electrons, and so the characteristic size of the electrostatic potential $\phi$ is set by the electron temperature $T_{e}$ , $e\phi \sim T_{e}$ , where $e$ is the proton charge. An asymptotic scale separation between the Debye length $\lambda _{D} = \sqrt {\epsilon _0 T_{{e}} / e^{2} n_{{e}} }$ , the ion sound gyro-radius $\rho _{s} = \sqrt { m_{i} ( ZT_{e} + T_{i} ) } / (ZeB)$ and the size of the collisional region $d_{c} = \alpha \lambda _{\textrm {mfp}}$ is assumed, $\lambda _{D} \ll \rho _{s} \ll d_{c}$ . Here $\epsilon _0$ is the permittivity of free space, $n_{e}$ is the electron density, $T_{i}$ is the ion temperature, $B= |\boldsymbol {B}|$ and $\lambda _{\textrm {mfp}}$ is the collisional mean free path of an ion. The form of the ion distribution function is assumed at distances $x$ from the wall such that $\rho _{s} \ll x \ll d_{c}$ , that is, collisions are not treated. A self-consistent solution of the electrostatic potential for $x \sim \rho _{s}$ is required to solve for the quasi-periodic ion trajectories and for the ion distribution function at the target. The large gyro-orbit model presented here allows to bypass the numerical solution of $\phi (x)$ and results in an analytical expression for the ion distribution function at the target. It assumes that $\tau =T_{i}/(ZT_{e})\gg 1$ , and ignores the electric force on the quasi-periodic ion trajectory until close to the target. For $\tau \gtrsim 1$ , the model provides an extremely fast approximation to energy–angle distributions of ions at the target. These can be used to make sputtering predictions.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have