Abstract

We study the statistics, in stationary conditions, of the work W_{τ} done by the active force in different systems of self-propelled particles in a time τ. We show the existence of a critical value W_{τ}^{†} such that fluctuations with W_{τ}>W_{τ}^{†} correspond to configurations where interaction between particles plays a minor role whereas those with W_{τ}<W_{τ}^{†} represent states with single particles dragged by clusters. This twofold behavior is fully mirrored by the probability distribution P(W_{τ}) of the work, which does not obey the large-deviation principle for W_{τ}<W_{τ}^{†}. This pattern of behavior can be interpreted as due to a phase transition occurring at the level of fluctuating quantities and an order parameter is correspondingly identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.