Abstract

Macro-Fiber Composite bimorph is a kind of piezoelectric actuator that allow large bending deformation. However, macro-fiber composites exhibit strong stiffness nonlinearity in their operation range, so it is difficult to accurately estimate their large deformation behavior based on a linear constitutive model. In addition, the macro-fiber composites have active and inactive parts, that significantly differ in their material sizes and properties, so it is not reasonable to consider them as uniform material. Thus, it is necessary develop an accurate modeling and analysis method for the large deformation macro-fiber composite structures. First, the mixing rules are extended to derive the three-dimensional homogenized mechanical and electrical parameters of the macro-fiber composite active part; based on these parameters, the actuation results of linear finite element model is in good agreement with the official data. Then a finite element model of the axially compressed macro-fiber composite bimorph is established, the bilinear tensile stiffness of macro-fiber composite is realized by secondary development in ANSYS. Comparison with the experimental results reveals high accuracy of the established finite element model. Thus, the developed method can be effectively used for the performance evaluation and design of the macro-fiber composite devices with large deformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.