Abstract
In this article two numerical approaches for the shape prediction of a composite wing panel under the combined actuation of a Shape memory alloy (SMA) wire and a Macro fiber composite (MFC) bimorph has been developed. The first approach is a Euler-Bernouilli beam theory based linear finite element iterative scheme and the second approach is a Timoshenko beam theory based nonlinear finite element iterative scheme that takes into account the von Karman strains. The force due to the SMA wire is modeled as a follower force. It is shown that both the techniques developed are capable taking into account this non conservative follower force, while accounting for any additional arbitrary loading. The numerical schemes developed in this paper are validated using the existing techniques while elucidating the lacuna in the existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.