Abstract

A BiFeO3 film is grown epitaxially on a PrScO3 single crystal substrate which imparts ~ 1.45% of biaxial tensile strain to BiFeO3 resulting from lattice misfit. The biaxial tensile strain effect on BiFeO3 is investigated in terms of crystal structure, Poisson ratio, and ferroelectric domain structure. Lattice resolution scanning transmission electron microscopy, precession electron diffraction, and X-ray diffraction results clearly show that in-plane interplanar distance of BiFeO3 is the same as that of PrScO3 with no sign of misfit dislocations, indicating that the biaxial tensile strain caused by lattice mismatch between BiFeO3 and PrScO3 are stored as elastic energy within BiFeO3 film. Nano-beam electron diffraction patterns compared with structure factor calculation found that the BiFeO3 maintains rhombohedral symmetry, i.e., space group of R3c. The pattern analysis also revealed two crystallographically distinguishable domains. Their relations with ferroelectric domain structures in terms of size and spontaneous polarization orientations within the domains are further understood using four-dimensional scanning transmission electron microscopy technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.