Abstract

This paper presents a design of lane change decision and control algorithm in highly dense traffic situation for self-driving vehicles using motion-based adaptive uncertainty propagation and Stochastic Model Predictive Control (SMPC). Essential ideas of the proposed algorithm are introduced; i) an optimal motion in a current situation with multiple criteria decision making (MCDM), ii) four steps to change lane successfully in the dense traffic situation which is modeled as a simple acceleration model based on real driving data, iii) motion-based adaptive uncertainty propagation to consider a model error. The proposed algorithm has been evaluated via simulation studies in MATLAB/Simulink and CARSIM. The simulation results show the effectiveness of the proposed algorithm and its performance for changing lane in the highly-dense traffic situation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call