Abstract

Autonomous driving holds significant promise for substantially reducing road fatalities. Unlike traditional machine learning methods that have conventionally been applied to enhance the motion control of Autonomous Vehicles (AVs), recent attention has shifted toward the utilization of Deep Learning (DL) and Deep Reinforcement Learning (DRL) techniques. These advanced approaches have the potential to greatly improve AV vehicle control and empower vehicles to learn from their surroundings. However, the majority of existing research has concentrated on straightforward scenarios, often neglecting the intricate challenges posed by vulnerable road users such as pedestrians, cyclists, and motorcyclists, as well as the influence of varying weather conditions. In this study, we propose a novel model founded on DRL, specifically leveraging Deep-Q Networks (DQN), to effectively manage AVs in complex scenarios characterized by heavy traffic, diverse road users, and diverse weather conditions. Our approach involves training the model in diverse weather conditions, encompassing clear daytime and nighttime as well as challenging weather conditions like heavy rainfall during both the day and sunset. Through this comprehensive training, the AV becomes proficient in navigating safely through intersections and reaching its destination without any accidents. To rigorously evaluate and validate our proposed approach, extensive testing was conducted employing the CARLA simulator. The simulation results unequivocally demonstrate that our model not only reduces travel delays but also minimizes the occurrence of collisions, marking a significant step forward in achieving safer and more efficient autonomous driving.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.