Abstract
This article describes the design, implementation, and evaluation of an active lane change control algorithm for autonomous vehicles with human factor considerations. Lane changes need to be performed considering both driver acceptance and safety with surrounding vehicles. Therefore, autonomous driving systems need to be designed based on an analysis of human driving behavior. In this article, manual driving characteristics are investigated using real-world driving test data. In lane change situations, interactions with surrounding vehicles were mainly investigated. And safety indices were developed with kinematic analysis. A safety indices–based lane change decision and control algorithm has been developed. In order to improve safety, stochastic predictions of both the ego vehicle and surrounding vehicles have been conducted with consideration of sensor noise and model uncertainties. The desired driving mode is decided to cope with all lane changes on highway. To obtain desired reference and constraints, motion planning for lane changes has been designed taking stochastic prediction-based safety indices into account. A stochastic model predictive control with constraints has been adopted to determine vehicle control inputs: the steering angle and the longitudinal acceleration. The proposed active lane change algorithm has been successfully implemented on an autonomous vehicle and evaluated via real-world driving tests. Safe and comfortable lane changes in high-speed driving on highways have been demonstrated using our autonomous test vehicle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.