Abstract

The study of runoff under the influence of human activities is a research hot spot in the field of water science. Land-use change is one of the main forms of human activities and it is also the major driver of changes to the runoff process. As for the relationship between land use and the runoff process, runoff yield theories pointed out that the runoff yield capacity is spatially heterogeneous. The present work hypothesizes that the distribution of the runoff yield can be divided by land use, which is, areas with the same land-use type are similar in runoff yield, while areas of different land uses are significantly different. To prove it, we proposed a land-use-based framework for runoff yield calculations based on a conceptual rainfall–runoff model, the Xin’anjiang (XAJ) model. Based on the framework, the modified land-use-based Xin’anjiang (L-XAJ) model was constructed by replacing the yielding area (f/F) in the water storage capacity curve of the XAJ model with the area ratio of different land-use types (L/F; L is the area of specific land-use types, F is the whole basin area). The L-XAJ model was then applied to the typical cultivated–urban binary land-use-type basin (Taipingchi basin) to evaluate its performance. Results showed great success of the L-XAJ model, which demonstrated the area ratio of different land-use types can represent the corresponding yielding area in the XAJ model. The L-XAJ model enhanced the physical meaning of the runoff generation in the XAJ model and was expected to be used in the sustainable development of basin water resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call