Abstract
Cellular interactions with the extracellular matrix during muscle formation and in muscular dystrophy have received increased interest during the past years. Laminins constitute a growing family of proteins with complex expression patterns in forming basement membranes during muscle development. In skeletal muscle, laminins constitute major ligands for cell surface receptors involved in the transmission of force from the cell interior, but laminins might also influence signal transmission events during muscle formation and in muscle regeneration. During myogenesis the laminin alpha1 chain is present around the epithelial somite; but later, in forming muscle, the laminin alpha1 chain is restricted to the myotendinous junction. The laminin alpha2, alpha4 and alpha5 chains are major laminin chains in the muscle basement membrane during muscle formation, but laminin alpha4 and alpha5 chains are absent in adult muscle. The importance of laminins for muscle integrity is manifested in congenital muscular dystrophies with defects in the laminin alpha2 chain. There is no good evidence for the presence of laminin alpha1 chain in dystrophic muscle, but some other fetal muscle laminins can be detected in dystrophic muscle. Characterization of laminin expression patterns in muscular dystrophies might be of diagnostic and therapeutic value. In this paper, we review the recent publications on the biological functions of muscle laminins and discuss their roles in skeletal muscle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.