Abstract

Recently, the industrial focus has shifted to renewable raw materials due to the exhaustion and rising pressures about environmental and political issues. Lignocellulosic biowaste can be derived from a range of sources, such as animal manure, forestry waste, and agricultural waste, and it can be transformed into lactic acid through a biochemical process. There are 942.63 million cattle in the world and annually generate 3.7 billion tons of manure, which could be used to produce lactic acid. The economic viability of a lactic acid plant from cow manure has not yet been determined and is, thus, considered in this study. Using the modeling program Aspen Plus data and other sources, as well as collecting all economic inputs, the feasibility analysis of a lactic acid plant handling cow manure is assessed in this paper. Three scenarios are calculated to check the feasibility depending on the plant size: scenario I handles 1,579,328 t·year−1, scenario II handles 789,664 t·year−1, and scenario III handles 315,865 t·year−1. The results demonstrate that treating the tested lignocellulosic biomass for the manufacture of lactic acid is economically feasible because the economic analysis shows positive net present values for scenarios I, II, and III. The technoeconomic analysis reveals that the minimum lactic acid selling price for scenario I is 0.945 EUR·kg−1, which is comparable to the cost of commercial lactic acid produced from starch feedstock. Scenario II achieves a minimum selling price of 1.070 EUR·kg−1, and scenario III 1.289 EUR·kg−1. The sensitivity analysis carried out reveals that the factor with the biggest impact on the NPV is the yield. Moreover, this study provides a model of industrial application and technoeconomic evaluation for lactic acid production from cow manure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call