Abstract

High optical purity lactic acid is in high demand as the precursor for synthesizing polylactic acid (PLA). The costs of expensive carbohydrates and nitrogen source materials accounts for a large portion of the production costs in lactic homo-fermentation. The use of lignocellulosic biomass for lactic acid production reduces the cost of the carbohydrate feedstock, but the cost of nitrogen sources is a big challenge when considering the high prices of general nitrogen sources. Low-cost nitrogen materials are vulnerable to being contaminated by exogenous mixed L-lactic acid and D-lactic acid; thus, their feasibility as nitrogen sources for the production of optically pure lactic acid products is hindered. The available reports focus on cost reduction using agro-industrial byproducts as nutrient sources, with these presenting fewer concerns on the effect of the optical purity of lactic acid-product monomers for polymerization. In this study, commonly used low-cost nutrient sources were characterized and screened for high optical purity L-lactic acid fermentation. Corn steep liquor (CSL), a widely used and cheap nutrient for lactic acid fermentation, was found not to be suitable because of its high content of mixed D-/L-lactic acids (up to 20%, w/w). On the other hand, cottonseed meal was found to be completely free of mixed L-/D-lactic acids. Therefore, the cottonseed meal was hydrolyzed with dilute sulfuric acid and used as a nitrogen source for L-lactic acid fermentation using lignocellulose feedstock as a substitution for yeast extract and peptone. The results showed that the final L-lactic acid titer reached 96.5 ± 0.2 g/L from 25% (w/w)-solids loaded pretreated and biodetoxified wheat straw with a yield of 0.31 g/g feedstock and an optical purity of 99.7%. The techno-economic evaluation indicated that the cost of the cottonseed meal was only USD 0.193/kg of lactic acid product, and the minimum lactic acid selling price (MLSP) was USD 0.813/kg of lactic acid product, which was only 25.1% compared to the use of yeast extract and peptone as the nutrients. Cellulosic L-lactic acid production using cottonseed meal as a complex nutrient source showed competitive performance when compared to starch feedstock from food crops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.