Abstract
Magnetic vortices in the parameter regime of electron magnetohydrodynamics are studied in a large laboratory plasma. The vortices consist of magnetic field perturbations, which propagate in the whistler mode along a uniform dc magnetic field. The magnetic self-helicity of the spheromak-like field perturbations depends on the direction of propagation. Vortices with opposite toroidal or poloidal fields are launched from two antennas and propagated through each other. The vortices collide and propagate through one another without an exchange of momentum, energy, and helicity. The absence of nonlinear interactions is explained by the force-free fields of electron magnetohydrodynamic (EMHD) vortices.
Paper version not known (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have