Abstract

Superabsorbent polymers (hydrogels) have been studied for their ability to influence soil hydraulic conductivity because they can store and release water due to their swelling properties. However, concerns related to the increased use of synthetic hydrogels necessitates a switch to bio-based hydrogels, which are renewable and more biodegradable in comparison to synthetic hydrogels. In this study, we synthesized a lignin-based hydrogel and amended a silt loam soil with it at concentrations of 0, 0.1, and 0.3% (w/w). A laboratory permeameter, double membrane tension infiltrometer, and evaporation method were used to measure the saturated (Ks), near saturated, and unsaturated hydraulic conductivity (K) of the samples, respectively. Saturated hydraulic conductivity was significantly decreased by the application of hydrogel at 0.1 and 0.3% (w/w) in comparison to the control treatment. The application of 0.3% (w/w) lignin-based hydrogel only significantly decreased hydraulic conductivity at −1 cm soil water pressure head. Hydraulic conductivity in the 0.1 and 0.3% (w/w) treatments increased along the K(θ) curve in the unsaturated zone (−750 cm < h < −10 cm) in comparison to the control treatment, which we hypothesized was due to bound water in the hydrogel being released and creating a wider path for the movement of water. The 0.1 and 0.3% hydrogel treatments also tended to store more water than the control treatment, especially after 24 h of evaporation. The implication of this study is that lignin-based hydrogels could swell and retain water in saturated soils and the bound water could be released to enhance the flow of soil water in unsaturated soil, thereby reducing the water stress of plants, which require less energy to move and absorb water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call