Abstract

Abstract. Determining soil hydraulic properties is of major concern in various fields of study. Although stony soils are widespread across the globe, most studies deal with gravel-free soils, so that the literature describing the impact of stones on the hydraulic conductivity of a soil is still rather scarce. Most frequently, models characterizing the saturated hydraulic conductivity of stony soils assume that the only effect of rock fragments is to reduce the volume available for water flow, and therefore they predict a decrease in hydraulic conductivity with an increasing stoniness. The objective of this study is to assess the effect of rock fragments on the saturated and unsaturated hydraulic conductivity. This was done by means of laboratory experiments and numerical simulations involving different amounts and types of coarse fragments. We compared our results with values predicted by the aforementioned predictive models. Our study suggests that it might be ill-founded to consider that stones only reduce the volume available for water flow. We pointed out several factors of the saturated hydraulic conductivity of stony soils that are not considered by these models. On the one hand, the shape and the size of inclusions may substantially affect the hydraulic conductivity. On the other hand, laboratory experiments show that an increasing stone content can counteract and even overcome the effect of a reduced volume in some cases: we observed an increase in saturated hydraulic conductivity with volume of inclusions. These differences are mainly important near to saturation. However, comparison of results from predictive models and our experiments in unsaturated conditions shows that models and data agree on a decrease in hydraulic conductivity with stone content, even though the experimental conditions did not allow testing for stone contents higher than 20 %.

Highlights

  • Determining soil hydraulic properties is of primary importance in various fields of study such as soil physics, hydrology, ecology, and agronomy

  • We studied the effect of Rv on saturated and unsaturated hydraulic conductivity by means of laboratory experiments and numerical simulations involving different amounts and types of coarse fragments

  • Determining the effect of rock fragments on soil hydraulic properties is a major issue in soil physics and in the study of fluxes in soil–plant–atmosphere systems in general

Read more

Summary

Introduction

Determining soil hydraulic properties is of primary importance in various fields of study such as soil physics, hydrology, ecology, and agronomy. (Bouwer and Rice, 1984). Most unsaturated flow studies characterize the hydraulic properties of the fine fraction (particles smaller than 2 mm in diameter) of supposedly uniform soils only (Bouwer and Rice, 1984; Buchter et al, 1994; Gusev and Novák, 2007). Stony soils are widespread across the globe (Ma and Shao, 2008) and represent a significant part of the agricultural land (Miller and Guthrie, 1984). Their usage tends to increase because of erosion and cultivation of marginal lands (García-Ruiz, 2010). Little attention has been paid to the effects of the coarser fraction on soil hydraulic characteristics, so that the relevant literature is still rather scarce

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call