Abstract

Abstract. A new soil nitrate monitoring system that was installed in a cultivated field enabled us, for the first time, to control the nitrate concentration across the soil profile. The monitoring system was installed in a full-scale agricultural greenhouse setup that was used for growing a bell pepper crop. Continuous measurements of soil nitrate concentrations were performed across the soil profile of two plots: (a) an adjusted fertigation plot, in which the fertigation regime was frequently adjusted according to the dynamic variations in soil nitrate concentration, and (b) a control plot, in which the fertigation was managed according to a predetermined fertigation schedule that is standard practice for the area. The results enabled an hourly resolution in tracking the dynamic soil nitrate concentration variations in response to daily fertigation and crop demand. Nitrate–nitrogen (N–NO3) concentrations in and below the root zone, under the control plot, reached very high levels of ∼ 180 ppm throughout the entire season. Obviously, this concentration reflects excessive fertigation, which is far beyond the plant demand, entailing severe groundwater pollution potential. On the other hand, frequent adjustments of the fertigation regime, which were carried out under the adjusted fertigation plot, enabled control of the soil nitrate concentration around the desired concentration threshold. This enabled a substantial reduction of 38 % in fertilizer application while maintaining maximum crop yield and quality. Throughout this experiment, decision-making on the fertigation adjustments was done manually based on visual inspections of the soil's reactions to changes in the fertigation regime. Nevertheless, it is obvious that an algorithm that continuously processes the soil nitrate concentration across the soil profile and provides direct fertigation commands could act as a “fertistat” that sets the soil nutrients at a desired optimal level. Consequently, it is concluded that fertigation that is based on continuous monitoring of the soil nitrate concentration may ensure nutrient application that accounts for plant demand, improves agricultural profitability, minimizes nitrate down-leaching and significantly reduces water resource pollution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.