Abstract

Evapotranspiration is a key link in the water cycle of terrestrial ecosystems, and the partitioning of evapotranspiration is a prerequisite for diagnosing vegetation growth and water use strategies. In this study, we used double-layer eddy covariance (DLEC) measurements within and above the canopy of poplar plantations to divide evapotranspiration into transpiration and evaporation during the growing season. We diagnosed the coupling state of airflows in the canopy vertical layer and found that the daytime coupling state at the half-hourly scale can mask nighttime decoupling. Furthermore, we investigated the daytime and nighttime vertical layer airflow coupling states separately and quantified the effects of coupling states on the DLEC of resolved transpiration. The partitioning results of the DLEC method were taken as the standard after the airflow coupling test. Then, the performance and accuracy of evapotranspiration partitioning for the modified relaxed eddy accumulation (MREA), the conditional eddy covariance (CEC), and the flux variance similarity (FVS) with DLEC were compared. Transpiration calculated from MREA showed the best agreement with DLEC, and the other methods showed different degrees of underestimation (1:1 slope = 0.64–0.83). Evaporation calculated from FVS showed the best agreement with DLEC, while CEC and FVS made an overestimation of more than 26% (1:1 slope = 1.26–1.99), but MREA made an underestimation from 5% to 35% (1:1 slope = 0.65–0.95). The correlation coefficients between DLEC and MREA for transpiration were 0.95–0.97 with RMSEs of 15.52–17.04 W m−2, and those between DLEC and FVS for transpiration were 0.73–0.78 with RMSEs of 10–21.26 W m−2 at the daily half-hourly scale. A detailed comparison of the differences between DLEC and evapotranspiration partitioning methods from high-frequency eddy covariance data under the condition of canopy vertical layer airflow mixing provides knowledge about the consistency of results for evapotranspiration partitioning in poplar plantation forests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call