Abstract

A single-phase homogeneous (La0.2Y0.2Nd0.2Gd0.2Sr0.2)CrO3 powder with high configurational entropy was synthesized by using the sol-gel method. The powder was obtained under mild experimental conditions, the crystal grains were fine and uniform, and the elements were evenly dispersed. We sintered the powders into monolithic porous green body by adding cellulose nanocrystals, which had good electrical conductivity. Their electrical conductivity at room temperature was approximately 6.6743 Ω·cm when the porosity was 38.90%. The experimental results showed that as the porosity increased, the resistivity increased and the thermal conductivity decreased accordingly. This trend occurred because of an increase in the porosity and a decrease in the connection of the particles; thus, the electron hole carriers were subjected to a greater resistance when passing through the junction. The combination of these properties indicates that the porous high-entropy (La0.2Y0.2Nd0.2Gd0.2Sr0.2)CrO3 ceramic possesses promise in the field of high-temperature electrochemical materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call