Abstract
Recent years have witnessed a notable increase in the occurrence of blackouts, especially in developing nations, attributed to the continuously growing demand on modern power networks. Given that the demand shows no signs of abating and is projected to increase further in the coming years, additional research on power system stability is imperative. This study, therefore, investigates voltage stability assessment in power systems using the L-index methodology, focusing on the Nigerian 28-bus system and the IEEE system. The L-index offers a practical means of identifying weak buses and evaluating voltage stability margins. Calculating L-index values for load buses under diverse conditions identifies critical points, with higher values indicating vulnerability. The research investigates injecting reactive power at load buses to prevent collapse, comparing outcomes with and without compensation. Analyzing the L-index's performance across varied loading scenarios confirms its precision in predicting breakdown points and identifying critical buses. Load flow analysis of the Nigerian 28-Bus system reveals that only bus 16 exceeds voltage limits, while line analysis shows total power losses. Increasing loadability exposes bus 16 as the weakest, supported by its low voltage magnitude. The research confirms bus 16 as the system's weakest point, guiding corrective measures to enhance stability and prevent collapse. Utilizing Matlab for implementation, this study contributes valuable insights into system vulnerability and provides a framework for improving voltage stability in power systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ABUAD Journal of Engineering Research and Development (AJERD)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.