Abstract

Safety and quality control are important for long-term storage and preservation of food. Glucose and food pH are the two most common markers for evaluating food quality. Herein, we constructed a Ni/NiO@RuO2 heterostructure-based two-way sensor via a novel eruption combustion pattern (ECP) using non-conventional amino acid as a propellant. This approach has the unique points of interests of in situ doping of oxides and the formation of heterojunctions, providing well-developed pores and high surface areas to enhance the material performance. The Ni/NiO@RuO2 heterostructures have been tested as a bi-functional catalyst for glucose and pH sensing. The sensor exhibits a fast response time of <0.1 ± 0.02 s, a sensitivity of 641.95 ± 0.5 μA mM−1 cm−2 towards glucose with a 0.4 ± 0.08 μM detection limit and a linear response of 0.1 to 5 mM. As a pH sensor, it exhibits an acceptable sensitivity of −41.6 mV pH−1 with a response time of <50 s over a pH range of 2–12. Moreover, this bi-functional sensor based on Ni/NiO@RuO2 performs well when applied to a selection of beverage samples. This study provides a new scalable and low-cost approach to fabricating hetero-oxide nanostructures with controllable heterojunctions for various sensor applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call