Abstract

The present contribution proves that Kresling-patterned tubular origami metamaterials can exhibit a nonlinear buckling behavior in compression characterized by extremely significant and sudden twisting, as well as by extreme transverse dilation/contraction. It is proved that such an extreme buckling behavior can be achieved by tuning the ratio between stiffness parameters controlling the relative compliance of in-plane deformation of facets with respect to their bending and folding about creases. The modeling strategy adopted in the present contribution is discrete in nature and consists of an extensional-rotational spring model where energy barriers are introduced to prevent the interpenetration of adjacent facets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call