Abstract

We study the localization property of a two-dimensional noninteracting electron gas in the presence of a random magnetic field. The localization length is directly calculated using a transfer matrix technique and finite size scaling analysis. We show strong numerical evidence that the system undergoes a disorder-driven Kosterlitz-Thouless-type metal-insulator transition. We develop a mean field theory which maps the random field system into a two-dimensional $\mathrm{XY}$ model. The vortex and antivortex excitations in the $\mathrm{XY}$ model correspond to two different kinds of magnetic domains in the random field system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.