Abstract

ABSTRACT Nanodevices that show the potential for non-linear transformation of electrical signals and various forms of memory can be successfully used in new computational paradigms, such as neuromorphic or reservoir computing. In this work, we present single-node Echo State Machine (SNESM) RC system based on bridge synapse as a computational substrate (consisting of 4 memristors and a differential amplifier) used for epileptic seizure detection. The results show that the evolution of the signal in a feedback loop helps improve the classification accuracy of the system for that task. The transformation in SNESM changes the correlation and distribution of the complexity parameters of the input signal. In general, there are more differences in the correlation of complexity parameters between the transformed signal and the input signal, which may explain the improvement in the classification scores. SNESM could prove to be a useful time series signal processing system designed to improve accuracy in classification tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.