Abstract
During general anaesthesia gas climate significantly is improved by performance of low flow techniques. Gas climatisation, however, markedly also will be influenced by the temperature loss at, and corresponding water condensation within the hoses, factors which are related to the technical design and material of the patient hose system. The objective of this prospective study was to investigate 1. how anaesthetic gas climatisation during minimal flow anaesthesia is influenced by the technical design of different breathing hose systems in clinical practice. 2. to investigate, whether a sufficient gas climatisation also can be gained with higher fresh gas flows if that hose system is used, proven beforehand to optimally warming and humidifying the anaesthetic gases. Three different systems, a conventional two-limb hosing consisting of smooth silicone hoses, a coaxial hosing, and a hosing consisting of actively heated breathing hoses, attached to a Dräger Cicero EM anaesthesia machine, were used during minimal flow anaesthesia with a fresh gas flow of 0.5 l/min. Gas temperature and absolute humidity were measured at the tapered connection between the inspiratory limb and the breathing system as well as at its connection to the endotracheal tube. The best gas climatisation was observed if heated breathing hoses were used. Thus, using this hosing, additionally gas temperature and humidity in the inspiratory limb were taken at fresh gas flow rates of 1.0, 2.0 and 4.4 l/min respectively. Measurements were performed in all groups at all general anaesthesias lasting at least 45 minutes during the lists of eight different days each. In minimal flow anaesthesia, with all hose systems likewise, generally an absolute humidity between 17 to 30 mgH2O/l is reached at the endotracheal tube's connector during the course of the list. Only in the first cases of the day there was a short delay of 15 to 30 minutes before reaching a humidity of at least 17 mgH2O/l. Only with heated hoses, however, humidity frequently even exceeded 30 mgH2O/l. If conventional or coaxial hosings were used, during minimal flow anaesthesia gas temperatures in an acceptable range between 23 to 30 degrees C were measured at the tube connector. With heated hoses, however, warming of the gases was excellent with gas temperatures between 28 to 32 degrees C. In minimal flow anaesthesia climatisation of the anaesthetic gases proved to be best if heated hoses were used. Thus, using heated hose systems another three trials with increasing fresh gas flow rates of 1.0, 2.0 and 4.4 l/min respectively were performed. Whereas climatisation of the anaesthetic gases still was found to be optimal with a fresh gas flow of 1.0 l/min, the humidity dropped drastically to values lower than 17 mgH2O/l at 2.0 l/min and even down to 10 mgH2O/l at a flow rate of 4.4 l/min. Gas temperatures, however, turned out to be independent of the flow and remained at 28-32 degrees C, even at a flow as high as 4.4 l/min. Using conventional hose systems and coaxial hosings acceptable, but not optimal climatisation of the anaesthetic gases can be gained if minimal flow anaesthesia is performed. The use of a coaxial hose system seems to lead to improved climatisation in long lasting procedures only. In routine clinical practice, however, conventional and coaxial hose systems are similar in respect to the climatisation of breathing gases. Heated breathing hoses performed markedly better in terms of climatisation of the breathing gas than the coaxial and the conventional hose system. With this hosing not only sufficient but optimal moisture and temperature values are realized. Optimal climatisation, however, only can be gained if low flow anesthetic techniques with fresh gas flows equal or less than 1 l/min are performed. With higher fresh gas flow rates the humidity decreases markedly while high gas temperatures are maintained. (ABSTRACT TRUNCATED)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.