Abstract
This study deals with the promotional effects of dispersed cocatalysts on hydrocracking of vacuum gas oil (VGO). The influence of oil-soluble molybdenum-, iron-, and cobalt-based materials is investigated with and without the presence of a commercial first-stage W–Ni/Al2O3–SiO2 hydrocracking catalyst. The experiments are conducted in a batch autoclave reactor (at 8.5 MPa and 420 °C). The dispersed metal catalysts enhanced the hydrogenation activity and reduced coke formation. Cobalt- and molybdenum-based cocatalysts show lower coke formation than the Fe cocatalyst. An addition of 500 ppm of Co or Mo cocatalyst decreased the amount of coke to 0.9 wt % from 2.5 wt % observed during the thermal cracking. The dispersed catalyst together with the supported catalyst shows similar decrease in coke formation and enhanced the yield of naphtha. A 5-lump kinetic model is developed based on the experimental data using dispersed and supported catalysts. The model incorporates coke formation and conversion of VGO to di...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have