Abstract

In this paper, different materials that involved amorphous silica–alumina and hydrothermally synthesized beta zeolite and treated Y zeolite (USY) were introduced as parts of the hydrocracking catalyst supports. The prepared supports were used for preparation of Ni-Mo/silica alumina–zeolite catalysts by wetness impregnation method. The prepared catalysts were characterized by BET, temperature programmed desorption (TPD), temperature programmed reduction (TPR), and field emission – scanning electron microscopy (FE–SEM) methods. Effect of zeolite type and content on hydrocracking of n-hexadecane and vacuum gas oil in a batch and a fixed-bed reactor was investigated. Also, the content of coke formed after reaction was measured by thermal gravimetric methods (TGA). Hydrocracking was done at 400 °C and 55 bar. The hydrocracking of vacuum gas oil results showed that in the Ni-Mo/10B-30USY catalyst containing higher USY zeolite with high total acidity, selectivity to middle distillate was higher than the other (90%). Moreover, the Ni-Mo/10B-30USY catalyst in hydrocracking of n-hexadecane had a higher yield (82%) and was more selective to heavier products (C9–C12). The findings indicated that in the Ni-Mo/10B-30USY catalyst, coke content was more than the other due to high acidity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.