Abstract
The influence of amorphous inclusions of a cylindrical shape on the photoconductivity of crystalline silicon under the action of radiation from the photosensitivity region of the structure under study was theoretically investigated. The photoconductivity of the structure is analyzed depending on the geometric dimensions of the inclusions, their location in the structure, and the rate of surface recombination of nonequilibrium charge carriers. It is established that when the fraction of inclusions in the structure increases, the processes of generation of nonequilibrium charge carriers are determined mainly by an amorphous matrix. The appearance of the effect of negative photoconductivity under certain conditions has been revealed.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have