Abstract

We have examined the kinetics of phase separation in ${\mathrm{Mn}}_{0.67}$${\mathrm{Cu}}_{0.33}$ using time-resolved neutron-scattering techniques. In an early-time regime, the kinetics follows the Cahn-Hilliard-Cook linear theory of spinodal decomposition. There is an intermediate stage. Then, at a late time, dynamic scaling is obeyed. The time dependence of the wave vector at maximum scattering intensity (which is inversely proportional to the average linear domain size) can be well described over the entire late-time regime and much of the intermediate-time regime by arguments recently put forward for earlier-time corrections to the limitingly late-time stages of phase separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.