Abstract

Electron beam induced etching (EBIE) is a high resolution, direct write, chemical dry etch process in which surface-adsorbed precursor molecules are activated by an electron beam. We show that nanoscale EBIE is rate limited through at least two mechanisms ascribed to adsorbate depletion and the transport of gaseous precursor molecules into an etch pit during etching, respectively. The latter has, to date, not been accounted for in models of EBIE and is needed to reproduce etch kinetics which govern the time-evolution of etch pits, EBIE throughput, and spatial resolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call