Abstract

Association rate constants for antigen/antibody associations have been computed by Brownian Dynamics simulations of D. L. Ermak and J. A. McCammon, J. Chem. Phys. 69:1352–1360, 1978. The model of monoclonal antibody (mAb) D44.1 is based on crystallographic data (B. C. Braden et al., J. Mol. Biol. 243:767–781, 1994). Electrostatic forces that steer the antigen to the antibody-combining site are computed by solving the linearized Poisson–Boltzmann equation. D44.1-HEL complex displays very similar association motifs to a related anti-lysozyme antibody, HyHEL-5-HEL system. The computed association rate constants are comparable in the two systems, although the experimental affinity constants differ by three orders of magnitude (D. Tello et al., Biochem. Soc. Trans. 21:943–946, 1993; K. A. Hibbits et al., Biochemistry. 33:3584–3590, 1994). Simulations suggest that the origin of the differences in the affinity come from dissociation rate constants. We have also carried out simulation experiments on a number of mutant antibody fragment–HEL associations to address the role of electrostatics and, to a limited extent, the orientational aspects of association.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.