Abstract

The emission standard for adsorbable organic halogen (AOX) has been adjusted as a mandatory assessment indicator in the papermaking industrial pollutants emission standards of China. To provide a theoretical basis to reduce AOX formation, a kinetic model of the first chlorine dioxide bleaching stage (D0) is presented for elemental chlorine-free (ECF) bleaching of eucalyptus kraft pulp. The kinetics of the D0 stage can be expressed as dW/dt = 314.6e-20.53/RT[H+]0.21[ClO2]0.41K0.98, where the reaction series for lignin, chlorine dioxide dosage, and H+ concentration are 0.98, 0.41, and 0.21, respectively. The reaction activation energy was 20.53 kJ.mol-1. R2 was greater than 0.9, which means that the model was shown to have high prognostic ability and feasibility. In the D0 stage, mostly lignin was removed and the reaction was fast. Much AOX was formed at the beginning of bleaching, and the reaction rate was primarily determined by the lignin content and chlorine dioxide dosage. H+ existed primarily as a catalyst and had little influence on AOX formation. The AOX formation occurs easily, as the reaction activation energy is less than 30 kJ.mol-1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call