Abstract

In this paper, a kinetic model of the first chlorine dioxide bleaching stage (D0) in an elemental chlorine-free (ECF) bleaching sequence is presented for bagasse pulps. The model is based on the rate of adsorbable organic halogen (AOX) formation. The effects of the chlorine dioxide dosage, the sulfuric acid dosage, and the reaction temperature on the AOX content of wastewater are examined. The reaction of AOX formation could be divided into two periods. A large amount of AOX was formed rapidly within the first 10 min. Ten minutes later, the AOX formation rate significantly decreased. The kinetics could be expressed as: dW⁄dt=660.8•e^(-997.98/T) 〖•[ClO〗_2 ]^0.877•[H2SO4 ]^0.355•W^(-1.065), where W is the AOX content, t is the bleaching time (min), T is the temperature (K), [ClO2] is the dosage of chlorine dioxide (kg/odt), and [H2SO4] is the dosage of sulfuric acid (kg/odt). The fit of the experiment results obtained for different temperatures, initial chlorine dioxide dosages, initial sulfuric acid dosages, and AOX content were very good, revealing the ability of the model to predict typical mill operating conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.