Abstract

Free radical polymerization kinetics of diallyl terephthalate (DAT) in solution was investigated with two different peroxide initiators: dicyclohexyl peroxydicarbonate (CHPC) and benzoyl peroxide (BPO) in temperature range from 50°C to 110°C, where ortho-xylene was used as a solvent. Conversion points were measured using Fourier Transform Infrared (FTIR) measurements. Previously developed kinetic model for bulk DAT polymerization, was extended to solution DAT polymerization. The ratio of solvent chain - transfer rate constants to propagation rate constants of the polymerization system were found between 1.25 10-4 to 1.68 10-4 for various reaction conditions. They were obtained using the calculated initial polymerization rates and the number average molecular weight measurements made by GPC. The effect of different solvent fractions and initiator concentrations on the diffusion limitations were investigated. Only two kinetic parameters, kpd0 and ktd0 were obtained by fitting the kinetic model onto measured conversions for various reaction conditions at 0.2, 0.5 and 0.8 solvent fractions. Thus obtained kpd0 and ktd0 kinetic parameters were extrapolated to zero solvent fractions and from obtained values of kinetic parameters the conversion points for bulk DAT polymerization were calculated and compared to measured conversion points.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.