Abstract

The kinetics of multi-step thermal degradation of Co(II) complex with N-benzyloxycarbonyl glycinato ligand [Co(N-Boc-gly)2(H2O)4]·2H2O, in non-isothermal conditions was studied using isoconversional and non-isoconversional methods. The degradation of complex occurs in three well-separated steps involving the loss of water molecules in first step followed by two degradation steps of dehydrated complex. The dependence of Arrhenius parameters on conversion degree showed that all observed steps of thermal degradation are very complex, involving more than one elementary step, as can be expected for most solid-state heterogeneous reactions with solid reactants and solid and gaseous products. It was shown that step 1, corresponding to the dehydration, involves a series of competitive dehydration steps of differently bound water molecules complicated by diffusion. Second step involves two parallel reactions related to the loss of two identical C6H5CH2O– ligand fragments complicated by the presence of products in gaseous state. Further degradation in step 3 corresponds to complex process with a change in the limiting stage, in this case from the kinetic to the diffusion regime, connected with the presence of gaseous products diffusing through the solid product.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call